
JOURNAL OF COMPUTATIONAL PHYSICS 138, 286–301 (1997)
ARTICLE NO. CP975819

Computation of Rovibrational Eigenvalues of
van der Waals Molecules on a CRAY T3D

Xudong T. Wu,* Prakashan P. Korambath,* Edward F. Hayes,*,1 and
Danny C. Sorensen†

*Department of Chemistry, Ohio State University, Columbus, Ohio 43210; †Department of
Computational and Applied Mathematics, Rice University, Houston, Texas 77001

Received March 18, 1997; revised August 5, 1997

Two algorithms for computing rovibrational eigen solutions for van der
Waals molecules are presented. The performance and scalability of these
algorithms are evaluated on a CRAY T3D with 128 processors using Ar–HO
as the test molecule. Both algorithms are based on a discrete variable represen-
tation (DVR) of the rovibrational Hamiltonian for van der Waals molecules.
The first algorithm applies the implicitly restarted Lanczos method (IRLM)
of D. C. Sorensen directly to the DVR Hamiltonian to obtain the eigenpairs
of interest. The second algorithm transforms the DVR Hamiltonian using
the sequential diagonalization and truncation (SDT) approach of Light and
co-workers to a reduced order SDT Hamiltonian prior to applying the IRLM.
Both algorithms make use of Chebychev polynomial preconditioning to speed
up the convergence of the IRLM. An important factor in the performance
of the two algorithms is the efficiency of the matrix–vector product operation.
Both algorithms make use of a Sylvester-type transformation to convert
most DVR matrix–vector operations into a series of significantly lower order
matrix–matrix operations. The basic trade-offs between the two algorithms
are that the first algorithm has a significantly higher percentage of level-3
BLAS operations, which allows it to achieve higher Mflops, whereas the
second algorithm involves the lower order SDT Hamiltonian, which makes
the IRLM converge faster. The implementation details (e.g., the distribution
of with the different submatrices that form the tensor representation of the
DVR Hamiltonian) are central to achieving maximum efficiency and near
linear scalability of the algorithms for large values of the total angular
momentum. Q 1997 Academic Press

1 Corresponding author.

286

0021-9991/97 $25.00
Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.

287ROVIBRATIONAL EIGENVALUES

I. INTRODUCTION

The theoretical prediction of rovibrational energy levels for polyatomic molecules
becomes increasingly difficult as the number of atoms in the system increases. While
several groups have developed approaches that work well on current scalar and
vector machines for three-atom systems, there is considerable interest in finding
more powerful approaches that can be used to solve problems that involve more
than three active degrees of freedom [1–6]. The focus of this paper is on the
performance and scalability of two algorithms that we have developed for obtaining
the rovibrational eigenvalues of van der Waals molecules on a CRAY T3D. Van
der Waals molecules have received a good deal of attention recently because of
the wealth of high resolution spectroscopic and dynamical data that is becoming
available for these weakly bonded molecules [7–12]. Previously we reported rovibra-
tional energy calculation using serial algorithms for van der Waals molecule such
as Ar–HS, Kr–HS [13], Ar–HCl, and Ar–HO [14]. The Ar–HO molecule was
selected for this study to generate detailed performance information that is typical
for these atom–diatom van der Waals molecules.

The computation time required to determine the rovibrational eigenvalues of
a molecule increases considerably as one goes from an atom–diatom system to
atom–polyatom systems because more degrees of freedom must be included to
obtain accurate theoretical predictions. In this paper we will evaluate two
algorithms for computing rovibrational eigen solutions for van der Waals mole-
cules. The performance and scalability of these algorithms will be evaluated on
a CRAY T3D with 128 processors using results from the study of the Ar–HO
van der Waals molecule. Both algorithms to solve the rovibrational Hamiltonian
for van der Waals molecules are based on a discrete variable representation
(DVR) approach originally introduced by Light and co-workers [15]. The first
algorithm applies the implicitly restarted Lanczos method (IRLM) of Sorensen
[16] directly to the DVR Hamiltonian to obtain the eigenpairs of interest.
The second algorithm transforms the DVR Hamiltonian using the sequential
diagonalization and truncation (SDT) approach of Light and co-workers [17] to
a reduced-order SDT Hamiltonian prior to applying the IRLM. Both algorithms
make use of Chebychev polynomial preconditioning to speed up the convergence
of the IRLM. One factor in the performance of the two algorithms is the
efficiency of the matrix–vector product operation. Both algorithms make use of
a Sylvester-type [18] transformation to convert most DVR matrix vector operations
into a series of significantly lower order matrix–matrix operations. The basic
trade-offs between the two algorithms are that the first algorithm has a significantly
higher percentage of level-3 BLAS operations, which allows it to achieve higher
Mflops, whereas the second algorithm involves the lower order SDT Hamiltonian,
which makes the IRLM converge faster. The implementation details (e.g., the
distribution of the different submatrices that form the tensor representation of
the DVR Hamiltonian and the processor-to-processor communication strategy)
are central to achieving maximum efficiency and near linear scalability of the
algorithms for large values of the total angular momentum. These will be
discussed in detail in the next several sections.

288 WU ET AL.

II. DVR HAMILTONIAN

The Hamiltonian for an atom–diatom system in a DVR was originally given in
Jacobi coordinates (R, r, u) and total angular momentum representation of the
body-fixed reference frame by Choi and Light [19],

Ha9b9k9
abk 5 Ta9a · db9b · dk9k 1

"2

2e S 1
R2

a
1

1
r2

e
D [Ak]b9b · da9a · dk9k

1
"2

2eR2
a

h[J(J 1 1) 2 2k2] · da9a · db9b · dk9k 2 (1 1 dk0)1/2L1
Jk[B1

k]b9b · da9a · dk9k11

2 (1 1 dk90)1/2L2
Jk[B2

k]b9b · da9a · dk9k21j 1 V(Ra , ukb) · da9a · db9b · dk9k (1)

in which the L6
Jk[B6

k]b9b are the Coriolis coupling terms that satisfy

L1
Jk B1

k 5 L2
J(k11) B2

k11 (2)

and V(Ra , ukb) is the potential energy term. In mass-scaled Jacobi coordinates R
is used to represent the distance between the atom and the center of mass of the
diatom. Since the diatom is treated as having a fixed internuclear separation, the
equilibrium distance r is fixed at re (the equilibrium value of the diatom in its ground
vibrational state); u is the angle formed between R and r (which lies along the
diatom bond); J is the total angular momentum and k is the projection of the total
angular momentum onto the body-fixed frame; and Ta9a is the kinetic-energy matrix
due to radial motion; while [Ak]b9b is the kinetic-energy matrix due to angular
motion. In Eq. (1), we have used the a index to label the quadrature points in R
and b to label the quadrature points in u.

In this paper, the approach to obtaining the eigen-solutions to Eq. (1), has been
influenced by two recent advances. First, we make use of several ideas developed
[14] for finding the eigenpairs of this Hamiltonian on a sequential computer using
IRLM. Second, we follow the idea suggested by Hu and Sorensen [20]. They pointed
out the value of using a Sylvester-type transformation to convert a high-order
matrix–vector operation into a series of lower order matrix–matrix operations,
whenever the initial matrix can be written in a tensor-product form. This converts
many level-2 BLAS operations into level-3 BLAS operations and makes it practical
to take advantage of the higher performance level-3 BLAS routines on a CRAY
T3D.

For example, if a matrix, M, has the tensor product representation

M 5 B J A, (3)

where A [R m3m and B [R n3n, then

y 5 Mx, (4)

where x, y [R mn, can be calculated through

289ROVIBRATIONAL EIGENVALUES

Y 5 AXBT, (5)

where X, Y [R m3n.
The DVR Hamiltonian, Eq. (1), can also be written as a tensor product,

HDVR 5 IK J Inu
J T 1 O

k
EK,K

k,k J Ak J D1 1 V

1 O
k

EK,K
k,k11 J Bk J D2 1 O

k
EK,K

k11,k J BT
k J D2 (6)

where T [R nR3nR and Ak [R nu3nu are given by Eq. (1). And D1 5

"2/2e(1/R2 1 1/r 2
e), D2 5 "2/2eR2 are diagonal matrices. Bk , on the other hand,

relates to B1
k through

[Bk]b9b 5 2(1 1 dk0)1/2L1
Jk[B1

k]b9b . (7)

The diagonal matrix V9 is the effective potential which includes the centrifugal
potential

(V9)a9b9k9
abk 5 V(Ra , ukb) · da9a · db9b · dk9k 1

"2

2eR2
a

h[J(J 1 1) 2 2k2] · da9a · db9b · dk9k . (8)

Finally, EKK
k,k , EKK

k11,k , and EKK
k,k11 are K 3 K matrices which have only one nonzero

element. For EKK
k,k , EKK

k11,k , and EKK
k,k11 the nonzero element is the (k, k) element, the

(k 1 1, k) element, and the (k, k 1 1) element, respectively.

III. APPLICATION OF SYLVESTER-TYPE TRANSFORMATION

To write down the matrix equivalent to y 5 HDVRx, we need to define the
operators T̃, Ãk , B̃k , and B̃9k . Y 5 T̃(X) is defined as

Y(i, :, :) 5 OnR

j51
Ti, jX(j, :, :); (9)

Y 5 Ãk(X) is defined as

Y(:, i, l) 5 5
0, if l ? k,

Onu

j51
[Ak]i, jX(:, j, k), if l 5 k;

(10)

Y 5 B̃k(X) is defined as

Y(:, i, l) 5 5
0, if l ? k 1 1,

Onu

j51
[Bk]i, jX(:, j, k), if l 5 k 1 1;

(11)

and finally Y 5 B̃9k(X) is defined as

290 WU ET AL.

Y(:, i, l) 5 5
0, if l ? k,

Onu

j51
[Bk]j,iX(:, j, k 1 1), if l 5 k 2 1.

(12)

With these definitions, y 5 HDVRx can be calculated through

Y 5 T̃(X) 1 D1 SOK
k51

Ãk(X)D1 D2 SOK
k51

(B̃k(X) 1 B̃9k(X))D1 V9 (X, (13)

where X and x follows the usual one-to-one correspondence from R nR3nu3K to
R nRnuK so that we have

x 51
X(:, 1, 1)

X(:, 2, 1)
???

X(:, nu , 1)

???

X(:, 1, K)
???

X(:, nu , K)

2 (14)

and the operation denoted by ‘‘(’’ is the element-by-element multiplication,

(V9 (X)(i, j, k) 5 V9(i, j, k)X(i, j, k). (15)

IV. IMPLEMENTATION ON THE CRAY T3D

The implementation of Eqs. (9)–(12) in a parallel fashion is accomplished by
partitioning the X, Y, and other matrices in Eqs. (9)–(12) and assigning the subma-
trices to different processors. Locally each processor performs matrix–matrix multi-
plications using level-3 BLAS routines to the maximum extent possible. Periodically,
processors must obtain the needed X or Y values from other processors through
interprocessor data communications. In the next few paragraphs, we describe how
the X and Y arrays are partitioned, what computation is done on each processor,
and what kind of the communication is required for this implementation.

The implementation strategy assumes that the processors are ‘‘logically’’ sitting
on a 3D torus network of processors, the size of the 3D torus is pR 3 pu 3 pK and
the total number of the processors p 5 pRpupK . The 3D array X 5 X(1 : nR ,
1 : nu , 1 : K) is distributed on the torus as follows: On processor (iR , iu , iK), the
local submatrix, Xloc corresponds to

Xloc(1 : mR , 1 : mu , 1 : mK)

5 X(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK), (16)

291ROVIBRATIONAL EIGENVALUES

where mR , mu , and mK , the array dimensions on local processors, are

mR 5
nR

pR
(17)

mu 5
nu

pu

(18)

mK 5
K
pK

. (19)

The Y matrix also has the same processor distribution as X. The other matrices T,
Ak , Bk are distributed in the following way:

Tloc(1 : mR , 1 : nR) 5 T(iRmR 1 1 : (iR 1 1)mR , :) (20)

(Aloc)k(1 : mu , 1 : nu) 5 AikmK1k(iumu 1 1 : (iu 1 1)mu , :) (21)

k 5 1, ..., mK

(Bloc)k(1 : mu , 1 : nu) 5 BikmK1k(iumu 1 1 : (iu 1 1)mu , :) (22)

k 5 0, ..., mK .

The computational scheme begins with processor (iR , iu , iK) assembling the follow-
ing quantities:

1. Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK)

5 T̃loc(X(:, iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK)) (23)

2. Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK)

5 O(iK11)mK

k5iKmK11
(Ãloc)k(X(iRmR 1 1 : (iR 1 1)mR , :, k)) (24)

3. Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 2 : (iK 1 1)mK 1 1)

5 O(iK11)mK

k5iKmK11
(B̃loc)k(X(iRmR 1 1 : (iR 1 1)mR , :, k)) (25)

4. Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK : (iK 1 1)mK 2 1)

5 O(iK11)mK

k5iKmK11
(B̃9loc)k21(X(iRmR 1 1 : (iR 1 1)mR , :, k)). (26)

The results of Eqs. (23)–(26) are used to assemble Y of Eq. (13).
Since the computations implied by Eqs. (23)–(26) involve not only local array

elements, data communication is necessary in order to complete these sums. In
order for processor (IR , iu , iK) to calculate Eq. (23), it needs the portions of X that
reside on pR different processors (1 ? ? ? pR , iu , iK); and to calculate Eqs. (24)–(26),
it needs the values of X that reside on pu different processors (iR , 1 ? ? ? pu , iK).

292 WU ET AL.

All the communications at this level are carried out in the following fashion. If
processor i1 needs the values of X from processor i2 , ..., ih , it will first use the
‘‘shmen–get’’ routine to obtain the values of X from processor i2 . Then, processor
i1 uses i2’s portion of X to continue its summation. When this calculation is completed,
processor i1 will get the values of X that reside on processor i3 . This procedure contin-
ues until processor i1 finishes all of the computations required by Eqs. (23)–(26).

We use the ‘‘shmem–get’’ routine in our implementation instead of the ‘‘faster’’
shared memory access routines (i.e., ‘‘shmem–put’’ routine) because ‘‘shmem–get’’
can perform safe data communications without synchronization between the proces-
sors. One difference between the CRAY T3D and other parallel computers (e.g.,
the Intel DELTA) is that one cannot control the underlying communication network
on the T3D. Although our algorithm assumes that processors sit ‘‘logically’’ on a
3D torus, in practice the physical communication network can be very different
from that of a real 3D torus. This might cause serious communication congestion
problems because some communications might require the same key links at the
same time. We minimize the chance of having different communications requiring
the same key links by using asynchronous communication, so that few communica-
tions will overlap in time. The routines that make the asynchronous communication
safe are the blocking routines such as ‘‘shmem–get.’’ Our tests will examine and
show that the performance of our implementation is efficient and reliable.

After the sums required by Eqs. (23)–(26) are completed, there is still one
additional required step. Note that the indices of Y in Eq. (25) are

Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 2 : (iK 1 1)mK 1 1),

instead of

Y(iRmR 1 1 : (iR 1 1)mR , iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK).

In order to complete the required sums, processor (iR , iu , iK) must pass part of its
Eq. (25) results to processor (iR , iu , iK 1 1), except when iK is not equal to pK 2

1. Similarly, processor (iR , iu , iK) needs to pass part of its Eq. (26) results to processor
(iR , iu , iK 2 1), unless iK equals 0. These communications are performed using the
‘‘shmem–put’’ shared memory access routine.

V. SEQUENTIAL DIAGONALIZATION AND TRUNCATION

The sequential diagonalization and truncation (SDT) transformation can be used
to reduce significantly the order of the matrix that one is working with to obtain
the eigenpairs of interest. Rather than work directly on the DVR Hamiltonian to
obtain the needed eigenpairs, the SDT method begins with a series of diagonaliza-
tions of lower dimensional problems followed by a truncation of the eigenvector
representation based on specified criteria to ensure accuracy of the final result but
yet reduce the dimension of the transformed matrix as much as possible. In the
traditional implementation [17] the sparsity of the DVR matrix is not preserved.
So the trade-off from a computational perspective is between a higher order sparse

293ROVIBRATIONAL EIGENVALUES

DVR-matrix and a lower order dense SDT-matrix. In earlier work, Pendergast et
al. [21] showed that if one is using an iterative eigen solver such as the IRLM, it
is not necessary or desirable to explicitly carry out the transformation from the
DVR to the SDT matrix representation. Since iterative methods only require that
matrix–vector products be assembled, there is no need to transform the DVR
matrix explicitly. Instead one can convert the vectors back and forth from the SDT
to the DVR representation as necessary. Another benefit of working with the SDT
matrix is that the eigenvalue spectrum in this truncated representation is much
better conditioned for an iterative procedure like IRLM.

In the van der Waals case presented here, the SDT process is carried out in two
stages. First, one forms a block diagonal matrix h which contains the diagonal
blocks of the full Hamiltonian of Eq. (1),

H a9b9k9
abk 5 h(bk)

a9a db9bdk9k

5 Ta9a · db9b · dk9k 1 V(Ra , ukb) · da9a · db9b · dk9k

1
"h2

2eR2
a

[J(J 1 1) 2 2k2]da9a · db9b · dk9k . (27)

Then each diagonal block of H is diagonalized using a standard EISPACK or
LAPACK diagonalizer to give

h(bk) 5 C(bk) · E(bk) · [C(bk)]T

in which C(bk) is a NR 3 NR 1D-eigenvector matrix, and E(bk) is a diagonal matrix
containing eigenvalues of h(bk) for each (b, k) blocks. In the SDT approach during
this operation the high energy eigenvectors in C(bk) are truncated to speed up the
diagonalization either by retaining a constant number of vectors or by retaining
the states C(bk) that satisfy an energy cutoff condition such that

E(bk) # E1D
cut .

The truncated C(bk) matrix, denoted by C̃(bk) has a reduced dimension NR 3 Pbk ,
where Pbk corresponds to the number of 1D eigenvectors that satisfy the required
cutoff limit in the corresponding (b, k) block.

At this stage the original 3D DVR Hamiltonian matrix is transformed to a
truncated Hamiltonian H̃SDT in the representation of truncated 1D-eigenvectors as

H̃l9b9k9
lbk 5 O

a9a

[C̃(b9k9)
a9l9]T · Ha9b9k9

abk · C̃(bk)
al

5 Ebk
l · dl9l · db9b · dk9k 1 O

a9a

[C̃(b9k9)
a9l9]T ·HS 1

R2
a

1
1
r 2

e
D [A k]b9b · da9aJ · dk9k · C̃(bk)

al

1 O
a9a

[C̃(b9k9)
a9l9]T ·H 1

R2
a

[2(1 1 dk0)1/2L1
Jk[Bk]1

b9b · dk9k11

2 (1 1 dk90)1/2L2
Jk[Bk]2

b9b · dk9k21]J · C̃(bk)
al .

294 WU ET AL.

In each (bk, b9k9) block, the transformation has reduced the NR 3 NR matrix to a
(Pbk 3 Pb9k9) matrix of 1D-eigenvector basis. Therefore,

H̃SDT 5 E 1 FC̃T SO
k

EK,K
k,k J Ak J D1

1 O
k

EK,K
k,k11 J Bk J D2 1 O

k
EK,K

k11,k J BT
k J D2D C̃G. (28)

So far the steps in the SDT transformation of Light and co-workers [17] and our
IRLM/SDT approach are basically the same. However, in the next step instead of
using a conventional diagonalizer to diagonalize the H̃SDT we use the IRLM ap-
proach. This technique was first introduced by Pendergast et al. [21] in the 2D
surface eigenfunction calculations needed by the APH hyperspherical coordinate
approach by Parker and Pack [22]. Recently Korambath et al. [13] have found that
this implicit SDT transformation to be effective for rovibrational eigen problems
using sequential computers and Wu and Hayes [23] have applied the implicit SDT
technique to obtain the HO2 rovibrational energy levels on a CRAY T3D.

The key to calculating the eigenpairs of H̃SDT is to calculate u 5 H̃SDTw, where
u, w are vectors. The first step is to transfer the vector w from the SDT representation
to the DVR representation by

x 5 C̃w. (29)

One can map x and w into 3D arrays X and W, where x and X, w and W are related
through Eq. (14). Now Eq. (29) can be rewritten as

X(:, b, k) 5 C̃(bk)W(:, b, k) (30)

because C̃ is a block diagonal matrix.
In the next step, one obtains

y 5 SO
k

EK,K
k,k J Ak J D1

1 O
k

EK,K
k,k11 J Bk J D2 1 O

k
EK,K

k11,k J BT
k J D2D x. (31)

The procedure is very similar to that presented in Sections III and IV.
Finally, the product is converted back to the SDT representation and combined

with the action of the first term in Eq. (28) on the initial vector, w, as

u 5 C̃Ty 1 E (w. (32)

If one maps u and y into U and Y, following Eq. (14), this equation can be written as

U(:, b, k) 5 E(:, b, k) (W(:, b, k) 1 C̃(bk)TY(:, b, k). (33)

295ROVIBRATIONAL EIGENVALUES

The Sylvester transformation can also be employed in the SDT case to connect the
matrix–vector operation in Eq. (31) to a series of lower order matrix–matrix opera-
tions.

The implementation of the SDT procedure on a parallel machine follows the
same general approach as that presented previously for the DVR procedure. The
main difference is that there are no partitions in the first dimension of X, Y, U,
and W. On the other hand, the u and K dimensions are partitioned in the same
way for X, Y, U, and W arrays. On the processor (iu , iK),

Xloc(:, 1 : mu , 1 : mK) 5 X(:, iumu 1 1 : (iu 1 1)mu , iKmK 1 1 : (iK 1 1)mK) (34)

and relationship between Yloc and Y, Uloc and U, Wloc and W can be obtained by
simply replacing X with Y, U, or W.

The last array that needs to be partitioned is C̃. On the processor (iu , iK),

C̃(1:mu)(1:mK)
loc 5 C̃(iumu11:(iu11)mu)(iKmK11:(iK11)mK). (35)

It is obvious that under the above partition, Eqs. (30) and (33) use only the local
data. The only other required calculation is Eq. (31), whose parallel implementation
is presented in Section IV.

VII. POLYNOMIAL PRECONDITIONING

Although an efficient matrix–vector product implementation is one of the most
important factors in obtaining good performance, the computation time for the
IRLM scales linearly with the number of iterations needed to obtain convergence.
In general there are two factors that influence significantly the number of iterations
necessary to achieve convergence. The first is the number of eigenvalues being
sought. The second is the distribution of all the eigenvalues of the matrix. The
IRLM takes fewer iterations when the desired eigenvalues are well separated. In this
application, we need to obtain eigen-solutions for the lower end of the eigenvalue
spectrum. This lower-energy part of the spectrum is tightly clustered, compared to
the higher energy part of the eigenvalue spectrum. This is the opposite of what is
desired for rapid convergence. A standard approach fixing this and accelerating
iterative eigensolvers is to use a preconditioner such as a Chebychev precondi-
tioner [24].

In our previous work [21], we found that Chebychev preconditioning can be used
effectively to alter the eigen-problem so that the IRLM will converge rapidly to
the desired eigenvectors. Since the eigenvectors for a polynomial of the Hamiltonian
are the same as the eigenvectors of the original Hamiltonian one can use these
converged eigenvectors to generate the desired eigenvalues using the Raleigh–Ritz
quotient. Details to arrive at the optimum order for the Chebychev polynomial to get
maximum speedups by using Chebychev preconditioning are given by Pendergast
et al. [21]. For the present application, we first calculate the eigenvectors of
fn([2H 2 (a1 1 a0)]/[a1 2 a0]), where fn is a Chebychev polynomial of nth degree,
a1 is the highest eigenvalue of H, and a0 is set a little higher than the upper bound

296 WU ET AL.

on eigenvalues to be determined. The highest eigenvalue, a1 is determined by direct
calculation without preconditioning. This is a very rapid calculation as the highest
eigenvalue is well separated from the rest of the spectrum. As we are interested
only in the bound-state eigenvalues below zero, we have found that taking a0 equal
to 0.1 eV works very nicely over a range of bound-state problems.

The product of the Chebychev polynomial and a vector, fn([2H 2 (a1 1 a0)]/
[a1 2 a0])v which is needed to calculate the eigenvectors using IRLM is obtained
from the 3-term recursion formula for n $ 2,

fn11 S2H 2 (a1 1 a0)
a1 2 a0

D v 5 S2H 2 (a1 1 a0)
a1 2 a0

D3 fn S2H 2 (a1 1 a0)
a1 2 a0

D v

2
1
4

fn21 S2H 2 (a1 1 a0)
a1 2 a0

D v (36)

and for n , 2 the recursion formula is

f2 S2H 2 (a1 1 a0)
a1 2 a0

D v 5 S2H 2 (a1 1 a0)
a1 2 a0

D3 f1 S2H 2 (a1 1 a0)
a1 2 a0

D v 2
1
2

,

f1 S2H 2 (a1 1 a0)
a1 2 a0

D v 5 S2H 2 (a1 1 a0)
a1 2 a0

D v.

We have found this recursion to be efficient and accurate for this application.

VIII. RESULTS AND DISCUSSION

One of the questions that we want to address is whether one can achieve better
overall performance on the parallel architecture CRAY T3D by working with the
DVR matrix—algorithm 1—or by working with the SDT representation of the
Hamiltonian for the system—algorithm 2. In order to have as unbiased a comparison
as possible it is important to take advantage of the underlying sparsity of the DVR
matrix and use the Sylvester-like transformations to achieve high performance in
generating the DVR matrix–vector product. On the CRAY T3D the assembly-
coded BLAS routines are known to be effective in achieving high levels of perfor-
mance on each processor. Moreover, the higher the level of the BLAS routine the
better the performance is. In the calculations reported here we have made special
efforts to make effective use of these routines. Since the Hamiltonian for the van der
Waals molecules studied here has a tensor product form, the most time-consuming
operations can be carried out using level-3 or level-2 BLAS operations. With this
background, we can now take a closer look at the computational trade-off between
the two algorithms.

For the Ar-OH van der Waals complex, we have carried out numerous compari-
sons of the DVR and SDT algorithms (algorithm 1 and algorithm 2, respectively).
For both cases the underlying DVR representation is the same, namely nR 5 96
and nu 5 24.

297ROVIBRATIONAL EIGENVALUES

FIG. 1. Total Mflops for diagonalizing the Hamiltonian for Ar–HO molecule for J 5 0, 1, 3, 7
without sequential diagonalization and truncation on different number of processors (number of radial
functions NR 5 96, number of angular functions Nu 5 24, number of eigenvalues 5 12).

In Fig. 1, we plot the total Mflops of the DVR approach versus the number of
processors for several different values of J. In Fig. 2, we have same kind of plot
for the SDT approach. Both plots show almost linear performance up to 32 proces-
sors. The DVR algorithm achieves higher Mflops compared to the SDT algorithm.
However, the total computation time for algorithm 1 is about twice the algorithm
2 computation time. So we have a situation in which the algorithm with the lower

FIG. 2. Total Mflops for diagonalizing the Hamiltonian for Ar–HO molecule for J 5 0, 1, 3, 7
with sequential diagonalization and truncation on different number of processors. Dimensions of the
Hamiltonian and the other computational parameters are same as in Fig. 1 (number of truncated radial
functions Pbk 5 72).

298 WU ET AL.

TABLE I
Comparison of Percentage Time for Ar–HO System for Three BLAS Levels as well as

Communication Overhead Time and Other Timea

Method # PE % Blas 3 % Blas 2 % Blas 1 % Comm. % other

SDT/DVR/IRLM 2 16.4 72.2 6.3 0.0 5.1
SDT/DVR/IRLM 4 14.4 65.3 9.3 6.7 3.9
SDT/DVR/IRLM 8 16.2 60.5 10.2 8.8 4.0
SDT/DVR/IRLM 16 21.8 52.5 7.4 14.4 2.5
SDT/DVR/IRLM 32 31.4 39.4 3.1 20.6 1.6

DVR/IRLM 2 72.3 — 19.5 0.9 7.1
DVR/IRLM 4 58.2 — 20.2 15.5 6.0
DVR/IRLM 8 56.0 — 17.8 13.8 5.6
DVR/IRLM 16 54.7 — 14.2 25.9 4.8
DVR/IRLM 32 48.0 — 12.2 27.5 4.0
DVR/IRLM 64 57.5 — 8.3 28.4 3.2

a Total number of radial basis functions (NR 5 96 Lobatto functions defined in the range Rmin 5

2.0 Å, and Rmax 5 10.0 Å); the total angular functions (Nu) 5 24 and J 5 3 truncated radial functions
(for SDT) (Pbk 5 72).

Mflops performance is the most effective in terms of total run time. In the next
few paragraphs we will provide some insight into why this is the case.

One factor contributing to the lower average Mflops for the SDT algorithm is
the transformation of the SDT vector into a DVR vector. This step is dominated
by level 2 BLAS operations. Table I contains a comparison of the percentage of
the computation time required for each of the three BLAS levels as well as the
communication overhead time and other computational time. These percentages
were obtained using Apprentice to evaluate the performance of the matrix–vector
program for the two cases. First, we note that for the DVR algorithm there are no
level-2 BLAS operations. For the SDT algorithm the percentage of level-3 BLAS
is reduced because the level-2 BLAS operations are taking an appreciable fraction
of the matrix–vector processing time. For any given number of processors the
percentage of communication time is about the same for the two cases. Since the
performance of the level-3 BLAS algorithm exceeds that of the level-2 BLAS by
about a factor of 2, the difference in the performance level of the two algorithms
is almost entirely due to the difference in the percentage of level-3 BLAS operations.

The advantage that the SDT algorithm has can be seen in Table II, where the
two algorithms are compared in terms of their total computation time and the
number of matrix–vector operations required by IRLM to converge on the lowest
12 eigenpairs. Basically, the larger DVR matrix requires about 4 to 5 times the
number of matrix–vector operations required by the smaller SDT matrix. This
effect is much greater than the ratio of the Mflops performance. As a result, the
time required to obtain the 12 eigenpairs on the same number of processors is
decreased by about one-half for the SDT case compared to the DVR case. In this
example, the R dimension is reduced from nR 5 96 to Pbk 5 72 by the SDT process.

299ROVIBRATIONAL EIGENVALUES

TABLE II
Diagonalization Time on CRAY T3D for Ar–HO Molecule for Several Values of the

Total Angular Momentum, J, and Number of Processorsa

Without SDT With SDT

J value No. processors M 3 Vb Timec M 3 Vb Timec Time ratio

0 2 6.660 4.200 0.630
0 4 3.998 2.374 0.593
0 8 1250 3.180 348 1.500 0.471

1 2 12.580 6.748 0.536
1 4 6.964 3.584 0.514
1 8 1040 3.979 264 2.080 0.522
1 16 2.442 1.400 0.573

3 2 27.759 14.659 0.528
3 4 14.866 7.996 0.537
3 8 1040 7.844 288 4.256 0.542
3 16 4.652 2.490 0.535
3 32 2.823 1.704 0.603

7 2 64.769 33.826 0.522
7 4 31.745 16.891 0.532
7 8 1100 15.779 320 8.833 0.559
7 16 8.307 4.712 0.567
7 32 4.952 2.777 0.560
7 64 3.025 1.907 0.603

a Number of radial basis functions (NR 5 96 Lobatto functions defined in the range Rmin 5 2.0 Å,
and Rmax 5 10.0 Å); number of angular functions (Nu) 5 24; and truncated radial functions (Pbk 5 72);
number of eigenvalues 5 12.

b M 3 V is the total number of matrix vector operations.
c Time in seconds.

In this example, we were able to obtain the required eigenpairs for a matrix of
size 9216 3 9216 in 1.7 s. While this has some significance, the power of these two
algorithms will become even greater when they are applied to systems with more
degrees of freedom. Part of the reason for this is that the performance of the level-
3 BLAS library routines such as ‘‘sgemm’’ is strongly related to the size of the
matrices involved. The most favorable matrix size for ‘‘sgemm’’ is around 60 3 60,
for this case the performance of ‘‘sgemm’’ can be over 90 Mflops for a single
processor on the CRAY T3D. On the other hand, if the matrix size becomes very
small (,10 3 10), the performance of ‘‘sgemm’’ can be reduced by a factor of 3
or more. Because the number of degrees of freedom in this study is quite small
(3), and the number of basis function in each degree of freedom is also small
(nR 5 96, nu 5 24, K 5 1, ..., 8), the size of the local matrices is about 10 when 64
or 128 processors are used. Therefore, the Mflops rating of ‘‘sgemm’’ is in the 20
to 40 Mflops range. However, for a system with more degrees of freedom such as
a 4-atom system, the local matrices will be large enough even when over 100
processors are used that the performance of ‘‘sgemm’’ will be about 90 Mflops.

300 WU ET AL.

Another obstacle to achieving high performance is the data communication be-
tween the processors. In general, there are two keys to reducing the impact of data
communication on the performance: (1) reducing the number of communications
when designing the algorithm; (2) making each communication as efficient as possi-
ble. The implementation, presented in Section IV is very effective in reducing the
number of communications involved. Here, we present one example from the DVR
algorithm to make the point clearer. For nR 5 96, nu 5 24, and K 5 8 case, we did
the following partition in the 32-processor calculation: We partitioned nR direction
into four sectors, we did not partition the nu direction, and we partitioned K into
eight sectors. With this partition scheme, five communications are performed during
each matrix–vector operation. Of these, three communications are performed when
computing Eq. (23), and two communications are performed to pass the results of
Eqs. (25) and (26).

To make each communication as efficient as possible, we want to avoid communi-
cation congestion to the maximum extent possible. As pointed out in Section IV,
the underlying physical communication network on the CRAY T3D is different
from our ‘‘logical’’ network, therefore directly applying some communication tem-
plates of multidimensional meshes will not achieve favorable results on the CRAY
T3D. The way we minimize communication congestion is to avoid many processors
communicating at the same time. In our implementation we use asynchronous
communications instead of synchronous communications to minimize congestion.
The above strategy works very well in this study.

With the insights obtained from the application of the DVR and SDT algorithm
to the van der Waals molecule Ar–HO, the SDT algorithm appears to be the most
promising for applications to rovibrational problems involving additional degrees
of freedom, provided one can reliably set the energy cutoff condition, E1D

cut , without
extensive testing for convergence.

ACKNOWLEDGMENTS

Partial support for this project came from National Science Foundation projects, ASC-9112693 and
ASC-9408795; additional support was also provided by the National Science Foundation in the form
of a postdoctoral fellowship grants ASC-9405161 and ASC-9504071. Computer time on the CRAY T3D
was provided by a grant from the Ohio Supercomputer Center.

REFERENCES

1. D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).

2. Y. Wang, T. Carrington Jr., and G. C. Corey, Chem. Phys. Lett. 228, 144 (1994).

3. D. J. Kouri, W. Zhu, G. Parker, and D. K. Hoffman, Chem. Phys. Lett. 238, 395 (1995).

4. V. A. Mandelshtam, T. P. Grozdanov, and H. S. Taylor, J. Chem. Phys. 103, 10074 (1995).

5. R. A. Friesner, J. A. Bentley, M. Menou, and C. Leforestier, J. Chem. Phys. 99, 324 (1993).

6. R. E. Wyatt, Phys. Rev. 51, 3643 (1995).

7. B. C. Chang, L. Yu, D. Cullin, B. Rehfuss, J. Williamson, T. A. Miller, W. M. Fawzy, X. Zheng,
S. Fei, and M. C. Heaven, J. Chem. Phys. 95, 7086 (1991).

8. M. C. Heaven, Ann. Rev. Phys. Chem. 43, 283 (1992) and references therein.

301ROVIBRATIONAL EIGENVALUES

9. M.-L. Dubernet and J. M. Hutson, J. Chem. Phys. 99, 7477 (1993).

10. M. Yang and M. H. Alexander, J. Chem. Phys. 103, 3400 (1995).

11. T. S. Ho, H. Rabitz, S. E. Choi, and M. I. Lester, J. Chem. Phys. 104, 1187 (1996).

12. M. I. Lester, R. A. Loomis, L. C. Giancarlo, M. T. Berry, C. Chakravarthy, and D. C. Clary, J.
Chem. Phys. 98, 9320 (1993).

13. P. P. Korambath, X. T. Wu, E. F. Hayes, C. C. Carter, and T. A. Miller, J. Chem. Phys. 107, 3460 (1997).

14. P. P. Korambath, X. T. Wu, and E. F. Hayes, J. Phys. Chem. 100, 6116 (1996).

15. J. V. Lill, G. A. Parker, and J. C. Light, Chem. Phys. Lett. 89, 483 (1982). [J. C. Light, I. P. Hamilton,
and J. V. Lill, J. Chem. Phys. 82, 1400 (1984); J. V. Lill, G. A. Parker, and J. C. Light, J. Chem.
Phys. 85, 900 (1986)]

16. D. C. Sorensen, SIAM J. Matrix Anal. Appl. 13, 357 (1992).

17. Z. Bac̆ić, R. M. Whitnell, D. Brown, and J. C. Light, Comput. Phys. Commun. 51, 35 (1988). [R. M.
Whitnell and J. C. Light, J. Chem. Phys. 90, 1774 (1989); T. J. Park and J. C. Light, J. Chem. Phys.
90, 2593 (1989)]

18. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (Johns Hopkins Univ. Press,
Baltimore, MD, 1989), p. 387.

19. S. E. Choi and J. C. Light, J. Chem. Phys. 92, 2129 (1990).

20. D. Y. Hu and D. C. Sorensen, Dept. Computational and Applied Math Report TR94-10, Rice
University, 1994.

21. P. Pendergast, Z. Darakjian, E. F. Hayes, and D. C. Sorensen, J. Comput. Phys. 113, 201 (1994).

22. R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).

23. X. T. Wu and E. F. Hayes, J. Chem. Phys. 107, 2705 (1997).

24. Y. Saad, Math. Comput. 42, 567 (1984) and the references therein.

